কষে দেখি 5.1 Class 10 ।অনুপাত ও সমানুপাত কষে দেখি Class 10| Koshe Dekhi 5.1 Class 10 WBBSE.

শ্রেণী- দশম ; অধ্যায় – অনুপাত ও সমানুপাত ; কষে দেখি 5.1


কষে দেখি 5.1 Class 10 অংকের সূচিপত্র:-

Table of Contents

কষে দেখি 5.1 Class 10 এর অংকের সমাধান গুলি ভালোভাবে বোঝার জন্যে কিছু উপদেশঃ

এই কষে দেখি 5.1, পশ্চিমবঙ্গ মধ্যশিক্ষা পর্ষদ | WBBSE এর অন্তর্গত দশম শ্রেণি|Class 10 এর পাঁচ নম্বর অধ্যায় অনুপাত ও সমানুপাত এর প্রথম অনুশীলনী।

এই কষে দেখি 5.1 Class 10 এর অংকগুলি করতে গেলে যে যে বিষয়গুলি তোমাদের জানতে হবে সেগুলি নীচে আলোচনা করা হলো-

a : b অনুপাতে পূর্বপদ ও উত্তরপদ কাকে বলে?

a : b অনুপাতে a -কে পূর্বপদ এবং b -কে উত্তরপদ বলে

সাম্যানুপাত কাকে বলে?

a : b অনুপাতের a = b হলে ওই অনুপাতকে সাম্যানুপাত বলে।

বৈষাম্যানুপাত কাকে বলে?

a : b অনুপাতের a \(\neq\) b হলে ওই অনুপাতকে বৈষাম্যানুপাত বলে।

গুরু অনুপাত কাকে বলে?

কোনো অনুপাতের মান \(\frac{a}{b}\)> 1 হলে, ওই অনুপাতটিকে গুরু অনুপাত বলে ।

লঘু অনুপাত কাকে বলে?

কোনো অনুপাতের মান \(\frac{a}{b}\)< 1 হলে, ওই অনুপাতটিকে লঘু অনুপাত বলে ।

ব্যস্ত অনুপাত কাকে বলে?

কোনো অনুপাতের পূর্বপদ ও উত্তরপদ পরস্পর স্থান পরিবর্তন করে যে নতুন অনুপাত তৈরি হয় সেই অনুপাতকে পূর্বের অনুপাতের ব্যস্ত অনুপাত বলে।

এই কষে দেখি 5.1 Class 10 এর অংকের সমাধানের জন্যে আরও একটি অনুপাতের সম্পর্কে জানতে হবে সেটি হলো মিশ্র অনুপাত-

যৌগিক বা মিশ্র অনুপাত কাকে বলে?

দুই বা ততোধিক প্রদত্ত অনুপাতের পূর্বপদের গুণফলকে পূর্বপদ এবং উত্তরপদ গুলির গুণফলকে উত্তরপদ ধরে যে অনুপাত পাওয়া যাবে সেই অনুপাতকে প্রদত্ত অনুপাতগুলির যৌগিক অনুপাত বা মিশ্র অনুপাত বলা হয়।


আগামিতে এই কষে দেখি 5.1 Class 10 এর অংক গুলির সমাধানের প্রয়োজন হলে কি করবে?

কষে দেখি 5.1 Class 10 এর এই কষে দেওয়া অংক গুলি তোমাদের যদি আগামিতে আবার প্রয়োজন হয় তাহলে তোমরা Google এ গিয়ে Search করবে-
কষে দেখি 5.1 Class 10
তারপর icon এই চিহ্ন দেখে Click করলে আবার তোমরা এখানে এসে যাবে।
Request For Search 1

কষে দেখি 5.1 Class 10

কষে দেখি 5.1 Class 10|Koshe Dekhi 5.1 Class 10

1. নীচের রাশিগুলি অনুপাতে প্রকাশ করি ও অনুপাতগুলি সাম্যানুপাত, লঘু অনুপাত না গুরু অনুপাত বুঝে লিখি।

(i) 4 মাস এবং 1 বছর 6 মাস

সমাধানঃ-

1 বছর 6 মাস= 12 + 6
= 18 মাস

নির্ণেয় অনুপাত

= 4 : 18

= 2 : 9

  • লঘু অনুপাত

(ii) 75 পয়সা এবং 1 টাকা 25 পয়সা

সমাধানঃ-

1 টাকা 25 পয়সা= 100 + 25
= 125 পয়সা

নির্ণেয় অনুপাত

= 75 : 125

= 3 : 5

  • লঘু অনুপাত

(iii) 60 সেমি. এবং 0.6 মিটার

সমাধানঃ-

0.6 মিটার= 60 সেমি.

নির্ণেয় অনুপাত

= 60 : 60

= 1 : 1

  • সাম্যানুপাত

(iv) 1.2 কিগ্রা. এবং 60 গ্রাম

সমাধানঃ-

1.2 কিগ্রা.= 1000 + 200
= 1200 গ্রাম

নির্ণেয় অনুপাত

= 1200 : 60

= 20 : 1

  • গুরু অনুপাত

2.

(i) p কিগ্রা ও q গ্রামের অনুপাতটি লিখি ।

সমাধানঃ-

p কিগ্রা.= p×1000 গ্রাম

নির্ণেয় অনুপাত

= 1000p : q


(ii) x দিন ও z মাসের মধ্যে অনুপাত নির্ণয় কখন সম্ভব হবে লিখি।

সমাধানঃ-

  • একই এককে আনলে,
z মাস= z × 30
= 30z দিন

নির্ণেয় অনুপাত

= x : 30z


(iii) একটি অনুপাত ও তার ব্যস্ত অনুপাতের মিশ্র অনুপাত কী ধরনের অনুপাত হবে লিখি।

সমাধানঃ-

ধরি, একটি অনুপাত a : b

অনুপাতটির ব্যাস্ত অনুপাত হবে b : a

অতএব, অনুপাত দুটির মিশ্র অনুপাত,

= a×b : b×a

= ab : ab

= 1 : 1

  • একটি অনুপাত ও তার ব্যস্ত অনুপাতের মিশ্র অনুপাত একটি সাম্যানুপাত হবে।

কষে দেখি 5.1 Class 10 এর অংকে এই মিশ্র অনুপাত কাকে বলে তোমরা একবার দেখে নেবে। আমি প্রথমেই আলোচনা করেছি।

(iv) \(\frac{a}{b}\) : c, \(\frac{b}{c}\) : a, \(\frac{c}{a}\) : b -এর মিশ্র অনুপাত নির্ণয় করি।

সমাধানঃ-

নির্ণেয় মিশ্র অনুপাত

= \(\frac{a}{b}\) × \(\frac{b}{c}\) × \(\frac{c}{a}\) : c×a×b

= 1 : abc


(v) x2 : yz এবং কোন অনুপাতের মিশ্র অনুপাত xy : z2 হবে হিসাব করে লিখি।

সমাধানঃ-

ধরি, \(x^2 : yz\) এবং a : b অনুপাতের মিশ্র অনুপাত \(xy : z^2\) হবে

শর্তে,

\( x^2 \times a : yz \times b = xy : z \)
বা, \(\frac{ax^2}{byz} = \frac{xy}{z}\)
বা, \(\frac{a}{b} = \frac{xy \times yz}{z \times x^2}\)
বা, \(\frac{a}{b} =\frac{y^2}{x}\)


(vi) \(x^2 : \frac{yz}{x}\), \(y^2 : \frac{zx}{y}\), \(z^2 : \frac{yx}{z}\) অনুপাতগুলির ব্যস্ত অনুপাতগুলির যৌগিক অনুপাত নির্ণয় করি ।

সমাধানঃ-

অনুপাতব্যাস্ত অনুপাত
\(x^2 : \frac{yz}{x}\) \(\frac{yz}{x} : x^2\)
\(y^2 : \frac{zx}{y}\)\(\frac{zx}{y} : y^2\)
\(z^2 : \frac{yx}{z}\)\(\frac{yx}{z} : z^2\)

ব্যস্ত অনুপাতগুলির যৌগিক অনুপাত

= \(\frac{yz}{x} \times \frac{zx}{y} \times \frac{yx}{z} : x^2 \times y^2 \times z^2\)

= \(xyz : x^2y^2z^2\)

= \(1 : xyz\)


3. নিম্নলিখিতগুলির মিশ্র অনুপাত বা যৌগিক অনুপাত নির্ণয় করি :

(i) 4 : 5, 5 : 7 এবং 9 : 11

সমাধানঃ-

নির্ণেয় যৌগিক অনুপাত

= 4×5×9 : 5×7×11

= 36 : 77


(ii) (x + y) : (x – y), (x2 + y2): (x+y)2 এবং (x2 – y2)2 : (x4 – y4)

সমাধানঃ-

নির্ণেয় যৌগিক অনুপাত

= (x + y)(x2 + y2)(x2 – y2)2 : (x – y)(x+y)2(x4 – y4)

= (x + y)(x4 – y4)(x2 – y2) : (x – y)(x + y)2(x4 – y4)

= (x + y)(x2 – y2) : (x + y)(x2 – y2)

= 1 : 1


4.

(i) A : B = 6 : 7 এবং B : C = 8 : 7 হলে, A : C নির্ণয় করি।

সমাধানঃ-

A : B = 6 : 7B : C = 8 : 7
বা, \(\frac{A}{B} = \frac{6}{7}\)বা, \(\frac{B}{C} = \frac{8}{7}\)
∴ \(\frac{A}{B} \times \frac{B}{C} = \frac{6}{7} \times \frac{8}{7}\)
বা, \(\frac{A}{C} = \frac{48}{49}\)
বা, A : C = 48 : 49

(ii) A : B = 2 : 3, B : C = 4 : 5 এবং C : D = 6 : 7 হলে, A : D নির্ণয় করি।

সমাধানঃ-

A : B = 6 : 7B : C = 8 : 7 C : D = 6 : 7
বা, \(\frac{A}{B} = \frac{2}{3}\)বা, \(\frac{B}{C} = \frac{4}{5}\)বা, \(\frac{C}{D} = \frac{6}{7}\)
∴ \(\frac{A}{B} \times \frac{B}{C} \times \frac{C}{D} = \frac{2}{3} \times \frac{4}{5}\times \frac{6}{7}\)
বা, \(\frac{A}{D} = \frac{16}{35}\)
বা, A : D = 16 : 35

(iii) যদি A : B= 3 : 4 এবং B : C = 2 : 3 হয়, তাহলে A : B : C নির্ণয় করি।

সমাধানঃ-

A : B = 3 : 4= 3×1 : 4×1= 3 : 4
B : C= 2 : 3= 2×2 : 3×2= 4 : 6
∴ A : B : C = 3 : 4 : 6

(iv) x : y = 2 : 3 এবং y : z = 4 : 7 হলে, x : y : z নির্ণয় করি।

সমাধানঃ-

x : y = 2 : 3= 2×4 : 3×4= 8 : 12
y : z= 4 : 7= 4×3 : 7×3= 12 : 21
∴ x : y : z = 8 : 12 : 21

5.

(i) x : y= 3 : 4 হলে, (3y – x) : (2x + y) কত হবে নির্ণয় করি।

সমাধানঃ-

x : y= 3 : 4
⇒ \(\frac{x}{y} = \frac{3}{4}\)
(3y – x) : (2x + y)
= \(\frac{3y – x}{2x + y}\)
= \(\frac{\frac{3y – x}{y}}{\frac{2x + y}{y}}\)
= \(\frac{3 – \frac{x}{y}}{2\frac{x}{y}+1}\)
= \(\frac{3 – \frac{3}{4}}{2\times \frac{3}{4} + 1}\)
= \(\frac{\frac{9}{4}}{\frac{5}{2}}\)
= \(\frac{9}{4}\times \frac{2}{5}\)
= \(\frac{12}{10}\)


(ii) a : b = 8 : 7 হলে, দেখাই যে (7a – 3b) : (11a – 9b) = 7 : 5

সমাধানঃ-

a : b= 8 : 7
⇒ \(\frac{a}{b} = \frac{8}{7}\)
(7a – 3b) : (11a – 9b)
= \(\frac{7a – 3b}{11a – 9b}\)
= \(\frac{\frac{7a – 3b}{b}}{\frac{11a – 9b}{b}}\)
= \(\frac{7\frac{a}{b} – 3}{11\frac{a}{b} – 9}\)
= \(\frac{7\times \frac{8}{7} – 3}{11\times \frac{8}{7} – 9}\)
= \(\frac{8 – 3}{\frac{88-63}{7}}\)
= \(\frac{5}{\frac{25}{7}}\)
= \(5\times \frac{7}{25}\)
= \(\frac{7}{5}\)

∴ (7a – 3b) : (11a – 9b) = 7 : 5


(iii) p : q = 5 : 7 এবং p – q = -4 হলে, 3p + 4q -এর মান নির্ণয় করি।

সমাধানঃ-

p : q= 5 : 7
⇒ \(\frac{p}{q} = \frac{5}{7}\)

আবার,

p – q = -4
বা, q (\(\frac{p}{q}\) – 1) = -4
বা, q(\(\frac{5}{7} – 1\)) = -4
বা, q (\(\frac{5-7}{7}\)) = -4
বা, q \(\frac{-2}{7}\) = -4
বা, q = 4 × \(\frac{7}{2}\)
বা, q = 14

এখন,

3p + 4q
= q (3\(\frac{p}{q}\) + 4)
= 14(3×\(\frac{5}{7} + 4\))
= 14(\(\frac{15+28}{7}\))
= 2×43 = 86

6.

(i) (5x – 3y) : (2x + 4y) = 11 : 12 হলে, x : y নির্ণয় করি।

সমাধানঃ-

(5x – 3y) : (2x + 4y) = 11 : 12
বা, \(\frac{5x – 3y}{2x + 4y} = \frac{11}{12}\)
বা, 12(5x – 3y) = 11(2x + 4y)
বা, 60x – 36y = 22x + 44y
বা, 60x – 22x = 44y + 36y
বা, 38x = 80y
বা, 19x = 40y
বা, \(\frac{x}{y} = \frac{40}{19}\)
বা, x : y = 40 : 19

(ii) (3a + 7b) : (5a – 3b) = 5 : 3 হলে, a : b নির্ণয় করি।

সমাধানঃ-

(3a + 7b) : (5a – 3b) = 5 : 3
বা, \(\frac{3a + 7b}{5a – 3b} = \frac{5}{3}\)
বা, 3(3a + 7b) = 5(5a – 3b)
বা, 9a + 21b = 25a – 15b
বা, 25a – 9a = 21b + 15b
বা, 16a = 36b
বা, 4a = 9b
বা, \(\frac{a}{b} = \frac{9}{4}\)
বা, a : b = 9 : 4

7.

(i) (7x – 5y ) : (3x + 4y) = 7 : 11 হলে, দেখাই যে (3x – 2y) : (3x + 4y) = 137 : 473

সমাধানঃ-

(7x – 5y) : (3x + 4y) = 7 : 11
বা, \(\frac{7x – 5y}{3x + 4y} = \frac{7}{11}\)
বা, 11(7x – 5y) = 7(3x + 4y)
বা, 77x – 55y = 21x + 28y
বা, 77x – 21x = 28y + 55y
বা, 56x = 83y
বা, \(\frac{x}{83} = \frac{y}{56}\) = k(ধরি)

অতএব,

x = 83k এবং y = 56k

(3x – 2y) : (3x + 4y)
= (3×83k – 2×56k) : (3×83k + 4×56k)
= (249k – 112k) : (249k + 224k)
= 137k : 473k
= 137 : 473

(ii) (10x + 3y) : (5x + 2y) = 9 : 5 হলে, দেখাই যে (2x + y) : (x + 2y) = 11 : 13

সমাধানঃ-

(10x + 3y) : (5x + 2y) = 9 : 5
বা, \(\frac{10x + 3y}{5x + 2y} = \frac{9}{5}\)
বা, 5(10x + 3y) = 9(5x + 2y)
বা, 50x + 15y = 45x + 18y
বা, 50x – 45x = 18y – 15y
বা, 5x = 3y
বা, \(\frac{x}{3} = \frac{y}{5}\) = k(ধরি)

x = 3k এবং y = 5k

(2x + y) : (x + 2y)
= (2×3k + 5k) : (3k + 2×5k)
= (6k + 5k) : (3k + 10k)
= 11k : 13k
= 11 : 13

8.

(i) 2:5 অনুপাতের উভয়পদের সঙ্গে কত যোগ করলে অনুপাতটি 6:11 হবে নির্ণয় করি।

সমাধানঃ-

ধরি, 2:5 অনুপাতের উভয়পদের সঙ্গে \(p\) যোগ করলে অনুপাতটি 6:11 হবে.

শর্তে,

\(\frac{2+p}{5+p} = \frac{6}{11}\)
বা, 11(2 + p) = 6(5 + p)
বা, 22 + 11p = 30 + 6p
বা, 11p – 6p = 30 – 22
বা, 5p = 8
বা, p = \(\frac{8}{5}\)

(ii) a : b বৈষম্যানুপাতের উভয়পদ থেকে কত বিয়োগ করলে বৈষম্যানুপাতটি m : n হবে নির্ণয় করি।

সমাধানঃ-

ধরি, a : b বৈষম্যানুপাতের উভয়পদ থেকে k বিয়োগ করলে বৈষম্যানুপাতটি m : n হবে

শর্তে,

\(\frac{a – k}{b – k} = \frac{m}{n}\)
বা, n(a – k) = m(b – k)
বা, an – nk = mb – mk
বা, nk – mk = an – mb
বা, k(n – m) = an = mb
বা, k = \(\frac{an – mb}{n – m}\)

(ii) কোন সংখ্যা 4 : 7 অনুপাতের পূর্বপদের সঙ্গে যোগ এবং উত্তরপদ থেকে বিয়োগ করলে উৎপন্ন অনুপাতটির মান 2 : 3 ও 5 : 4 -এর যৌগিক অনুপাত হবে।

সমাধানঃ-

2 : 3 ও 5 : 4 -এর যৌগিক অনুপাত

= 2×5 : 3×4

= 10 : 12

= 5 : 6

এখন ধরি, k এমন একটি সংখ্যা যা, 4 : 7 অনুপাতের পূর্বপদের সঙ্গে যোগ এবং উত্তরপদ থেকে বিয়োগ করলে উৎপন্ন অনুপাতটির মান 2 : 3 ও 5 : 4 -এর যৌগিক অনুপাত 5 : 6 এর সমান হবে।

শর্তে,

4 + k : 7 – k = 5 : 6
বা, \(\frac{4 + k}{7 – k} = \frac{5}{6}\)
বা, 6(4 + k) = 5(7 – k)
বা, 24 + 6k = 35 – 5k
বা, 6k + 5k = 35 – 24
বা, 11k = 11
বা, k = 1


Class 10 WBBSE এর বাকি অধ্যায়ের সমাধান-

অধ্যায়সমাধান
1. একচলবিশিষ্ট দ্বিঘাত সমীকরণ (Quadratic Equations with one variable)কষে দেখি 1.1
কষে দেখি 1.2
কষে দেখি 1.3
কষে দেখি 1.4
কষে দেখি 1.5
2. সরল সুদকষা (Simple Interest)
কষে দেখি 2
3. বৃত্ত সম্পর্কিত উপপাদ্য (Theorems related to circle)কষে দেখি 3.1
কষে দেখি 3.2
4. আয়তঘন (Rectangular Parallelopiped or Cuboid)
কষে দেখি 4
5. অনুপাত ও সমানুপাত ( Ratio and Proportion)কষে দেখি 5.1
কষে দেখি 5.2
কষে দেখি 5.3
6. চক্রবৃদ্ধি সুদ ও সমহার বৃদ্ধি বা হ্রাস
(Compound Interest and Uniform Rate of Increase or Decrease)
কষে দেখি 6.1
কষে দেখি 6.2
7. বৃত্তস্থ কোণ সম্পর্কিত উপপাদ্য (Theorems related to Angles in a Circle)কষে দেখি 7.1
কষে দেখি 7.2
কষে দেখি 7.3
8. লম্ব বৃত্তাকার চোঙ (Right Circular Cylinder)
কষে দেখি 8
9. দ্বিঘাত করণী (Quadratic Surd).কষে দেখি 9.1
কষে দেখি 9.2
কষে দেখি 9.3
10. বৃত্তস্থ চতুর্ভুজ সংক্রান্ত উপপাদ্য (Theorems related to Cyclic Quadrilateral)
কষে দেখি 10
11. সম্পাদ্য : ত্রিভুজের পরিবৃত্ত ও অন্তবৃত্ত অঙ্কন
কষে দেখি 11
12. গোলক (Sphere)
কষে দেখি 12
13. ভেদ (Variation)
কষে দেখি 13
14. অংশীদারি কারবার (Partnership Business)
কষে দেখি 14
15. বৃত্তের স্পর্শক সংক্রান্ত উপপাদ্য (Theorems related to Tangent to a Circle)কষে দেখি 15.1
কষে দেখি 15.2
16. লম্ব বৃত্তাকার শঙ্কু (Right Circular Cone)
কষে দেখি 16
17. সম্পাদ্য : বৃত্তের স্পর্শক অঙ্কন
(Construction: Construction of Tangent to a circle)

কষে দেখি 17
18. সদৃশতা (Similarity)কষে দেখি 18.1
কষে দেখি 18.2
কষে দেখি 18.3
কষে দেখি 18.4
19. বিভিন্ন ঘনবস্তু সংক্রান্ত বাস্তব সমস্যা
(Real life Problems related to different Solid Objects)

কষে দেখি 19
20. ত্রিকোণমিতি : কোণ পরিমাপের ধারণা
(Trigonometry: Concept of Measurment of Angle)

কষে দেখি 20
21. সম্পাদ্য : মধ্যসমানুপাতী নির্ণয়
(Construction: Determination of Mean Proportional)

কষে দেখি 21
22. পিথাগোরাসের উপপাদ্য (Pythagoras Theorem)
কষে দেখি 22
23. ত্রিকোণমিতিক অনুপাত এবং ত্রিকোণমিতিক অভেদাবলি
(Trigonometric Ratios and Trigonometric Identities)
কষে দেখি 23.1
কষে দেখি 23.2
কষে দেখি 23.3
24. পূরক কোণের ত্রিকোণমিতিক অনুপাত
(Trigonometric Ratios of Complementrary angle)

কষে দেখি 24
25. ত্রিকোণমিতিক অনুপাতের প্রয়োগ : উচ্চতা ও দূরত্ব
(Application of Trigonometric Ratios : Heights & Distances)

কষে দেখি 25
26. রাশিবিজ্ঞান : গড়, মধ্যমা, ওজাইভ, সংখ্যাগুরুমান
(Statistics: Mean, Median, Ogive, Mode)
কষে দেখি 26.1
কষে দেখি 26.2
কষে দেখি 26.3
কষে দেখি 26.4
Request For Share
সমাধান গুলি ভালো লাগলে অবশ্যই বন্দুদের সাথে share করবে। নিজে শেখো ও অপরকে শিখতে সাহায্য করো।
Let’s Study Together………….
Share


এই কষে দেখি 5.1 Class 10|Koshe Dekhi 5.1 Class 10 এর সমাধান গুলি ভালো লাগলে অবশ্যই বন্ধুদের সাথে share করবে এবং wbstudyhub.in এই ওয়েবসাইট কে বুকমার্ক করে রাখবে যাতে যে কোনো অধ্যায়ের অংক আটকালে তোমরা তা এখানে এসে দেখে নিতে পারবে।

share

এখানে তোমরা তোমাদের দশম শ্রেণীতে| Class 10 এ কি কি পড়ানো হয়, মানে তোমাদের দশম শ্রেণীতে| Class 10 সিলেবাসে কি আছে তা জানার জন্যে তোমরা তোমাদের শ্রেণীর সিলেবাস এখানে দেখে নিতে পারবে ।



Leave a Comment